Congratulations to SLIS Ph.D. in Information Science student Ketan Mane for nearing the completion of his doctoral degree. His Dissertation Defense is scheduled for October 2, 2006. His Committee Members are: Katy Börner (Chair), Javed Mostafa, Luis Rocha, and Sun Kim.

Ketan has accepted a Postdoctoral Research Associate position at the Los Alamos National Lab (LANL) in New Mexico.

Two of his doctoral committee emailed about Ketan's contributions. Katy Börner wrote:

The quote Ketan uses in his emails reads:
"Mind, once stretched by a new idea, never regains its original dimensions.
- Oliver Wendell Holmes, Jr."

Ketan has definitely stretched his and the collective mind of the InfoVis Lab and CI for Network Science Center since he joined SLIS in May 2002. We hope he will keep on pushing scientific boundaries and become a valued bridge from his Ph.D. home to Los Alamos National Lab and to wherever his mind an heart will take him.

Javed Mostafa wrote:

Ketan is a creative thinker and he seems to have an endless supply of energy that he brings to his projects. He has contributed immensely to SLIS.

Ketan Mane also commented on his studies: "SLIS provided an ideal infrastructure for research and collaboration on several projects. I would to thank my advisor Katy Bör, Information Visualization Lab members and other SLIS faculty for the most interesting, exciting, intellectually stimulating and rewarding phase during the course of my doctoral studies."

Dissertation Abstract
Analysis and visualization techniques share a symbiotic relationship when it comes to making sense of datasets. Particularly for large datasets, the coupling of data analysis and data visualization is often beneficial. While there exist a gamut of data analysis and visualization techniques, it is often problematic to identify what combination of techniques is good for what task to provide maximum insight about a dataset.

This thesis introduces, exemplifies and validates a Data Analysis and Visualization Taxonomy, called 'DA-Vis taxonomy', that provides guidance to the selection of complementary analysis and visualization techniques. The DA-Vis taxonomy is validated by demonstrating its utility to develop new visualizations for real world applications. Further, the new taxonomy is applied to systematically describe and classify couplings of data analysis and visualization techniques in prior work. A user-study that evaluates the usability of the DA-Vis taxonomy was also conducted and is reported here.

The intellectual contributions of the thesis include a flexible DA-Vis layout schema that can be used to tightly couple complementary data analysis and visualization techniques. The thesis also shows a visionary computational diagnostic tool developed for data analysis and visualization of clinical data. Techniques used to generate meaningful knowledge management visualization from a dataset are presented as a part of the thesis. The thesis concludes with a discussion of the broader impacts of the DA-Vis taxonomy, the computational diagnostic tool, and knowledge management maps.

Posted Sept. 15, 2006