Case-based Learning for Design*

Katy Borner Dietmar Janetzko
University of Freiburg University of Freiburg
Centre for Cognitive Science Centre for Cognitive Science
79098 Freiburg, FRG 79098 Freiburg, FRG
katy@cognition.iig.uni-freiburg.de dietmar@cognition.iig.uni-freiburg.de

We present a general framework for an adaptive, user-interactive design support system.
Adaptability requires the acquisition and usage of huge amounts of highly structured knowl-
edge. Interactiveness, i.e., the ability to perform and react in tight co-operation with the user,
is of special importance in complex domains like industrial building design. Case-based learn-
ing will be applied to provide the knowledge necessary to support subgoaling, pre-organization
of the case-base, similarity assessment, and adaptation. Prior work (Bérner 1994a, Borner
1994b) focused on structural similarity assessment and adaptation. Our main intention here
is case-based subgoaling and its interaction and relation to the former via some appropriate
knowledge representation. The paper gives the underlying ideas and the basic algorithms of
the framework. For its practical evaluation the framework has been partially implemented in
SynGraph, a module of the knowledge-based system FABEL—-IDEA.

1 Introduction

In knowledge acquisition, reasoning, and system development there are strong interactions between the
tasks the system has to fulfil, the reasoning methods chosen, and the knowledge needed cf. (Janetzko,
Borner, Jaschke and Strube 1994). The application domain used to delineate case-based learning for
design is industrial building design. Given an actual problem solving state, we need to suggest: subgoals
to be tackled next; a set of previous experiences to give some hints about possible solutions; and most
ambitious to provide adapted design solutions. Frequently, architects browse through old blueprints
reflecting similar designs in order to solve new problems. According to our experience and to the literature
as well (Goel 1989, Hinrichs 1992, Hua and Faltings 1993, Kolodner 1993), case-based reasoning (CBR)
seems to be the natural problem solving method.

The tasks and CBR as the main problem solving method force the acquisition of cases and appropriate
similarity measures over case-sets. Arising questions are: What grainsize should cases have? How to
represent cases? How to define similarity in a computational effective but at the same time structural
selective manner? Finally, how to acquire and structure the huge amount of knowledge necessary to
support building design? Given an appropriate knowledge representation scheme, the integration of
learning is a promising way to lessen the burden of knowledge elicitation to system development. The
intention of this paper is to present a framework for a system that starts with no knowledge at all and is
able to learn incrementally the knowledge needed to support the design of buildings.

The sections of this paper may be summarized as follows. Section 2 provides an introduction into the
application domain inclusive its formalization. Section 3 presents the outline of our framework. Section
4, which is the heart of this paper, provides the basic learning and reasoning algorithms applied. The
final part of the paper discusses and relates the presented framework.

*This research was supported by the German Ministry for Research and Technology (BMFT) within the joint project
FABEL under contract no. 413-4001-01IW104. Project partners in FABEL are German National Research Center of
Computer Science (GMD), Sankt Augustin, BSR Consulting GmbH, Miinchen, Technical University of Dresden, HTWK
Leipzig, University of Freiburg, and University of Karlsruhe.

2 Application Domain and its Formalization

The application domain used to delineate our rationale of incremental, adaptive learning and interactive
case-based problem solving is industrial building design. Our focus is on installations in buildings with
a complex infrastructure. Here, the main problem is how to layout subsystems for fresh and used air,
electrical circuits, warm, cold, and used water, computer networks, phone cables, etc. In the following
we will introduce the notions of objects, states, task-structures, and two kinds of case representations
inclusive similarity measures. Formalizations are given in slanted letters. The formalizations are needed
to introduce the algorithms for case-based learning and reasoning in the subsequent section.

2.1 Objects

To represent CAD-like drawings, we use the representation scheme A4 (Hovestadt 1993). A4 allows to
represent objects (e.g., concrete objects like rooms, pipes, chairs etc., but also more abstract objects like
areas for the entire house or the climate system, etc.) graphically and atiribute-based. The former is used
as the main basis for man-machine interaction. The latter constitutes the basis for machine learning and
reasoning.

Graphically, Ad-objects are represented by geometrical objects. Different states during the design of
a building correspond to different configurations of objects'. In this paper, we restrict ourselves to two
dimensional pictures for readability.

Attribute-based, Ad-objects are represented by values for a fixed set of geometrical attributes G :=
{ai, ..., ar} and type attributes D := {agy1,...,am}. Geometrical attributes that describe placement and
extension are {z,dz,y,dy}. The type of some object is denoted by the attributes { aspect, morphology,
resolution, size }. Aspect relates to the subsystem of the building (e.g., z=supply-air). Morphology
denotes the general function of the area addressed (e.g., a=linkage, e=development, v=connection). The
third attribute specifies the kind of resolution employed (e.g., b=area, h= bounding-box). Size relates to
the part of the building that is envisaged (e.g., 4=hallway, 6=room, 8=areas within a room).

Objects are defined by their geometrical and type attribute values. We use some notions from database
theory to denote an attribute value of an object o at some attribute a by o.a. Thus an object o; can be
represented by the union of the set of geometrical attribute values 0;.G := {o0;.a1, ...,0;.a;}, and the set
of type attribute values, defined by 0;.D := {o;.a541,...,0i.am}, 1.e., 0 := 0,.GU 0;.D.

CG=<S1‘“ S7> C7E<S7y S8>

€)= <S5y, 5>

(T s

a 5 S 6o o] S
I
N7
Y

(0] oo
J zaba) | | Booct] (2ab6) | §o oo (zabs)

C,= <S5y 53> %g s,
(ze0d) | 4= < 85, §5>
N
Y [—
S S =
C=<535>| oo ° 38 - C5= < 5. %>
© 9 b || BB zvbe)
o v
S type attribute values
s, <71 % (typ)
S or s - state
L (ZVh4L; (E (zvh6é) G- case

Figure 1: Objects, states, and cases

1Ellipses are a substitute for rectangles circumscribed by the ellipses. Using ellipses instead of rectangles is an unac-
customed but very useful trick: Ellipses overlap only in a few points. The readability of drawings becomes essentially
improved.

2.2 States

CAD-like drawings correspond to snapshots of states in problem solving. We assume, that objects of
identical type are grouped together to constitute a state.

Fig. 1 depicts the design of eight different states named s1, ..., sg of some fresh air system. Each state
is represented by a number of objects. The geometrical attributes of objects are represented graphically.
Their types are represented by attribute values. As an example, state s; of type zab4 shows five objects
that represent the areas of supply—air linkage which cover the hallway.

States s; are a set of objects o;,, .. ., Oi,,, of identical type o;, .D. We define s;.G as the set containing
all sets of geometrical attribute values for the objects belonging to s;, i.e., s;.G := {0;, .G | k=1,...,n;}.
We may now represent a certain state s; by the pair consisting of the set of geometrical attribute
values for the set of objects belonging to s; and their type attribute values. In our approach holds:
(05,.D = 0;,.D = ... = Oiy,. .D). So without loss of generality we may represent some state s; by
sj := (s;.G, 0;,.D). The set of all states is named S.

2.3 Task-Structures

The task to be supported by case-based reasoning is the creation of new objects based on objects already
designed. Given a certain design state, say s in Fig. 1, the design of two states sy or s7 may be attacked.
Designing ss first, s3 on the basis of s5 or s; on the basis of s; may be tackled next etc. In Fig. 1 arrows
are used to denote these predecessor relations between states. The state-transitions are seen as tasks to
be tackled one after each other. The set of states together with their relations constitute the so called
task-structure.

Task-structures represent some semiordering relation < over a set of states S that is defined by
s; < s; <= iff objects of s; are designed on the basis of objects constituting state s;. States s1,s2 € S
are called immediately subsequent iff there exists no other state s € S with s1 < s < s3. Weights ws, <5,
may be used to state the frequency, i.e. preference, of possible state transitions.

2.4 Cases

Aiming at a task-oriented user support (Janetzko et al. 1994), the grainsize of cases is identical to the
grainsize of tasks. Different design steps, i.e. tasks, require different design strategies. For example,
while return air accesses will be connected by using the shortest path, connections for fresh air accesses
take curved tracks to achieve noise reduction. Each task requires separate cases, i.e., a solution state
dependent case-base. For an illustration see Fig. 1. Given the problem objects of type zabj, case
¢1 = (s1, $2) supports the design of zebj-objects. Next, these zebj-objects of sa become the problem and
are solved by designing objects of type zvb{, i.e. s3, applying ¢z = (sa2, s3). Depending on the stage in
problem solving a state can either take the role of a problem or of a solution.

Attribute-based, cases are defined by the geometrical and type attribute values of immediately

subsequent states. Let the superscripts p and s denote the problem and solution state of some case ¢. The
set CB; p of cases with identical solution type s.D is defined by

CBs p :={(sP,s*) € Sx S |s?.D <s*.DAs*.D=s.D}.

There is an important difference between s*.G and s*.D describing the solution. While s*.D represents
its global intentional solution, i.e., the next subgoal, s°.G represents the specific extensional solution, i.e.,
the design solution. Thus, s°.D refers to peculiarities of states with its different case-bases and similarity
relations. Contrary, s°.G represents specific geometrical attribute values of objects.

To determine similarity between cases represented in an attribute-based way we may use standard
similarity measures of CBR. See (Vo 1994) for different approaches.

Attribute-based Similarity of two problem states 5?, sk may here be simply defined via the distance

of their geometrical attribute values sf.G and st .G. Weights w® may be used to denote the relevance

of attribute values, e.g., to prefer the geometrical extension of objects as opposed to their placement.
Assuming sg.G and s} .G have the identical number n of objects their HAMMING distance 6 is defined by:

n
5
6(51;, sh) = Z'wi . 6(0§l.G, oﬁl.G).
i=1
The distance may be transformed into a similarity measure c® by:

1
afp Py ._
o (SJ’Sk)'_l—I—é(sﬁ,sﬁ)'

Due to the application domain, attribute based object descriptions are not sufficient to determine
similarity in terms of adaptability. For illustration, have again a look at Fig. 1, state s5. Given the
geometrical attribute values of the four partial object arrangements, their identity after rotation and
reflection is hard to determine. Not the geometrical attribute values of single objects count. Instead
the relations between objects belonging to one state have to be considered. Reasoning has to proceed
over object relations instead over attribute values of single objects. Necessary are topological, structural
representations of states inclusive appropriate similarity concepts. Using an algebraic approach we rep-
resent problems and solutions by ground terms (i.e. terms containing no variable like above(a,b)) of some
appropriate signature.

Structurally, cases are represented by ground terms t in some term algebra T'(X,0). See (Bdrner
1994a, Borner 1994b) for a detailed explanation. Assuming the existence of some transformation function
¢ with its inverse automatically enables to transform attribute-based representations into structural
representations and vice versa. The structural representation of problem and solution state of some case

c = (sP,s*) is defined by: t* := ¢(s!.G) A t5:= o(s;.G).

Structural similarity assessment proceeds by comparing some actual problem with the common struc-
ture or prototype of a set of prior problem experiences. For that reason we need to derive the prototype of
prior problems first. Storing the modifications which lead to the common prototype we know about proper
modifications to change the actual problem to fit into the prototype. Contrary to standard approaches

to CBR these modifications are represented by the structural similarity measure?.

tPT
o' T{ e} /et L en)
T={t t t
= 1 2! ey m}

Figure 2: Prototypes

Structural Similarity o7 is defined as the union of proper modifications which relate a set of

problems t € TP, i =1,...,n to each other (see Fig. 2). That is
O-PT = U?:l 62_1

satisfying tf@;l =t"Tr =1, ... ,n. The unique term t*7P is called the prototype of this term set>. For
any other prototype t of TP there exists an inverse substitution =1 s.t. t*7Pg=1 =+¢.

2As an example of this view to similarity, imagine a prototypical room. This room, which may or may not exist, is a
representative for all rooms you have ever seen. Remembering prior rooms (cases) of specific types, forms, usages, etc. you
are able to determine proper modification rules (G'PT) which lead to the room-prototype. Entering an unseen space, you
will be easily able to recognize if it is a room. You simply apply proper modifications and compare the result with the
corresponding room prototype.

3This definition of syntactic similarity is close to the concept of syntactic antiunification. Given two terms t1,to one is
searching for some term ¢, called anti-unifier, and corresponding substitutions 64, §2 satisfying both t6; = ¢; and t0y = t2.
The term ¢ is called least general anti-unifier (Muggleton 1992) or most specific generalization (Plotkin 1970) iff there is no
other anti-unifier ¢/ with ¢/ = t4.

3 Outline of the Framework

Taken from (Borner and Vof§ 1994) Fig.3 provides the general outline of the framework. We use a
trace of the human-system interaction, which feeds into four algorithms all of which incrementally learn
knowledge needed in design support. The following convention is used here: arrows are employed to
denote knowledge processing, squared boxes sketch knowledge examples.

1
NLmen
. Ay 7!
next set of adapted
trace subgoal candidate | design
cases solution
(i i)

— SUpPPOrt systern
(user actions
recorded during
previous design)
task-structure

lAIg cB
task dependent CB, 6 CB,.s Algga (cxa)Z 56 (Ga)zabB task dependent
attribute-based attribute-based
case-bases CBgps (O'a)zeb4 similarity relations

|0 I H
ask depend cc cc Algger (oPTPT oPT, {PT
I;trucn?;ln et 7306 zab8 —0’(! Zabe (f)zabs ;?TS"J(C?SP? dent.
= Gt ey saies

N

Figure 3: Outline of the framework

As a graphical surface we employ a knowledge-based CAD-system called DANCER (Hovestadt 1993).
The user while employing the system like a standard CAD drawing tool designs objects, assigns labels,
etc. The design steps and the objects designed are recorded in a trace that provides the input to the
support system.

The actual support by the system may be divided into three parts: First, providing guidance to select
the next subgoal, i.e., the next state to be tackled in design. Second, suggesting a set of candidate cases
able to give some hint to solve the actual problem. Third, generating an adapted design solution which
fits the selected subgoal. In all three settings the user is each time in a position to accept, modify, or
reject the solution. If the problem actually given can’t be solved by the system it is allocated to the user.
Each successful solution and each user interaction are inputs to the algorithm and influence learning and
reasoning immediately.

Let’s have a closer look at the algorithms. Algorithm ALGrg extracts preferred state sequences,
i.e. task-structures, out of several traces. Corresponding to their type attribute values objects are
grouped to states. In the task-structure consecutive states are recorded together with weights of their
frequency. The task-structure itselfis used to support subgoaling and to elicit cases in a task-oriented way.
Algorithm ALGep uses it like a cookie-cutter to stencil cases out of the original trace. The cases (stored
in CB) are given in A4 representation, i.e., by attribute-value pairs. Given some appropriate distance or
similarity measure, algorithm ALG,. learns about attribute relevance. Applying this measure enables to

determine a set of candidate cases CC out of the case-base CB. For adaptation, relations between objects
have to be taken into account. Structural representations are needed. To transform the geometrical
object representation into some topological, algebraic representation we assume the existence of some
transformation function ¢. Given this knowledge representation algorithm ALG,rr extracts prototypes
tPT from sets of prior problems automatically. New problems will be matched against these prototypes
by applying the structural similarity measure o7 . Given structural similarity, the prototypical solution
is transferred. Applying inverse modifications and the inverse transformation function ¢! leads to the
adapted design solution.

4 Algorithms

Given the introduced knowledge representation and appropriate reasoning methods the algorithms are
straightforward. For readability we introduce ALGrp responsible for subgoaling and ALG,cB, ALGya,
ALG,rr responsible for design separately.

4.1 Task-Structures and Subgoaling

Algorithm ALGrp learns preferred state sequences, i.e., the task-structure out of user traces. Traces are
primarily a sequence of designed objects o;,, k = 1, ..., by, constituting states s;. The objects itself are
represented by their geometrical and type attribute values. Traces may be seen as never ending. After
the complete design of a building, the user may design the next. Starting with state sequences for specific
buildings we derive complex structures called task-structures (see subsection 2.3) which correspond to
the alternatives and peculiarities when designing different buildings.

Subgoaling refers to the capability, of knowing what to do subsequently at any state in problem solv-
ing. In order to show this capability, states to aim at, i.e., subgoals have to be created, selected, and
linked. Excluding interacting and parallel ways we want to learn proper (alternative) state sequences. In
building design it is difficult to acquire preconditions and effects of certain design steps. Thus, we learn
alternative state sequences, i.e., sequences of states traversed one after each other.

Algorithm ArGyp:

begin
input o;, €55, k=1,..., ky;; P 1= sj;
repeat
if subgoal-support then
begin
if (s € S) and (Y(sg, s1 € S) (Wsr<s, > Wsr<s,)) then
begin

s*.D := sp; output s*.D
end else begin output no-subgoal; input s*.D end
end;
[call ALGye, ALG,Pr, and ALG,cp];
Wsp<ss ‘= Wsp<ss + 1
sPi=s*
until abort
end.

Figure 4: Algorithm to support subgoaling

Algorithm ALGrp (see Fig. 4) may be seen as the main, all other algorithms supporting and activating
one. If subgoal-support is required by some human user ALGpp takes objects o;, as input, determines

the next subgoal, calls subsequent algorithms for the actual design solution, and learns weights for state
transitions in order to deal with multiple choices. Obviously, at the first run with empty knowledge base,
the algorithm provides not hint what to do. Given some object o;,, which is supposed to belong to some
problem state sP with o;, .G € s?.G and 0;.D = sP.D, the actual solution consisting of s*.G and s°.D
with s?.D < s°.D must be provided by the user. As long as abort = FALSE the algorithm repeats with
the actual solution state as the new problem, i.e. s? := s°.

4.2 Cases, Similarity Measures, and Design Solutions

For the actual design solution we need to derive the geometrical attribute values s*.G of type s*.D.
In CBR a two-stage similarity assessment (Gentner and Forbus 1991) has been widely accepted as an
efficient way to case-selection. Taking this stance we advocate for a combination of fast preselection to
determine a set of candidate cases CC', followed by structural similarity assessment to derive adapted
solutions. Preselection proceeds by comparing weighted attribute values using o®. For structural similar-
ity assessment and adaptation prior and actual geometrical attribute-based descriptions are transformed
into term-based (or graph-based) ones. Using the underlying term algebra (or graph algebra) and the
concept of antiunification (Muggleton 1992) we are able to learn inductively about proper substitutions
of ! € CC represented by ot which lead to their common prototype ¢¥Z. The modification rules (e.g.,
proper substitutions, deletions of objects, geometrical transformations, etc.) will be used to determine
the set of cases to which a new problem belongs. Given structural similarity the prototypical solution
of this case set is transferred to the actual problem. Adaptation proceeds by applying the substitutions,
which lead the common prototype. This has been discussed in detail elsewhere (cf. (Borner 1994b)).

Algorithm ALGep, ALG,q, and ALG,pr:

begin
if design-support then
begin
CCy: p :={ci | ¢; € CBss p Ao?(f.G,sP.G) > threshold”” }; output CCj: p;
if (adaptation-support) and (| CCss p | > 1) then
begin
7= ¢(sP.G); TP :={th |V (cf, € CCss p) (th = ¢(h.G) };
o = un_ 07 with ¥ (& € TP) (¢7TPr =18 0. 1);
if (17 o1 = ¢T'r) then
begin
= tF150 with V (¢ € CCs: p)((t5 = (ci.G) A (718 =5 071));
s5.G = ¢~ 1(t*); output s°.G
end
end else input s°.G
end else input s°.G,
CBss p := CBss p U (sP, %)
end

end;

Figure 5: Algorithms to support design solutions

Fig. 5 provides the general algorithm to support design. It is called by algorithm ALGrp. Input are
the geometrical problem description s?.G' and the next subgoal s°.D to be addressed. If the user wants
design support, a set of candidate cases CCys p is selected and presented. The appropriate threshold?” is
strongly user, domain, and task dependent. If the user asks for adaptation-support and there are more than
one candidate case structural similarity assessment and adaptation proceeds. That is, the actual problem
(7 := ¢(sP.G3)) and the problems of the candidate cases (TP := {t} |V (ck € CCys p) (th = ¢(c},.G))}) are

transferred into their structural descriptions. The prototype t¥7'? and the structural similarity measure

ot of TP is derived. Given structural similarity (t# o7 = ¢fT'P) the prototypical solution is transferred
and adapted (t* := tf7-%0). Applying the inverse transformation function ¢~! leads to the geometrical
attribute values of the design solution s°.G. If knowledge is missing or the user wants to solve a certain
task on his own, he has to determine the actual design solution s*.G. Finally, the actual case is added to

the appropriate case-base. The algorithm continues in Fig. 4.

4.3 Implementation

The algorithm ALGrp is partially implemented and generates task-structures of 85% accuracy out of 12
user traces using several heuristics. ALGcp was implemented separately in order to cut cases of unique
grainsize automatically and in a task-oriented way. Both algorithms constitute the backbone of a pro-
gram called SynGraph (Synthesis using Graph-based knowledge representations) which fully implements
the algorithms ALG,« and ALG,rr to similarity assessment and adaptation. SynGraph is a module of
the design support system FABEL-IDEA.

5 Discussion

When CBR is applied in real world domains, problems that relate to the amount and the structural
complexity of the knowledge needed have to be addressed. Systems that require an immense effort for
knowledge elicitation will hardly succeed. Filling in large forms to label and save each possibly useful
experience, as suggested e.g., for the ARCHIE system (Domeshek and Kolodner 1992) will not do. There
is simply no time to feed in all knowledge required. We believe that highly user-interactive frameworks,
which manage knowledge elicitation during the system usage, are a real challenge to enable useful and
realizable computer-aided support in design. The close linkage of knowledge acquisition, problem solving,
and learning guaranties support that is adaptive to the user and the peculiarities of the chosen domain.

There are three basic approaches our framework and therefore the intense integration of learning
is based on. First, the task-oriented approach to knowledge acquisition and reasoning. It enables not
only the automatical acquisition of task-structures and cases but also determines knowledge exchange
points between user and system. Their reasoning strategies may differ, their solution exchange via states
is exactly defined. Second, the introduced conjunction of subgoaling and design via the representation
of states and cases. Third, the two level case representation as basis for computationally effective and
structurally selective reasoning.

We want to contrast our work to CBC (Avila, Paulokat and Wef§ 1994) the CBR component of the
planning system CAPLAN. In order to do so, we compare the choice points, i.e. the ways how subgoals,
cases / operators, and their right adapiations / instantiations are determined. In CBC already solved
plans are used to control and restrict the search space. In our approach the goal-choice is based on the
task-structure, i.e. the entire set of prior states inclusive their predecessor relations. CAPLAN applies
operators to derive concrete solutions. In our domain most state transitions can not be represented by
operators. Accessible knowledge are concrete prior experiences (cases). Thus the operator choice in CBC
is comparable to our selection of appropriate candidate cases. Last but not least the choice of variable
instantiation for a selected goal may be compared to our concrete solution instantiation, i.e., adaptation.
Again, and contrary to work done, e.g. in case-based explanation (Kass, Leake and Owens 1986), struc-
tural similarity assessment and adaptation is done on the basis of the entire set of relevant cases. Taking
indexes to retrieve prior experiences and applying adaptation rules separately will not do. We have to
deal with structures to determine similarity in terms of adaptability.

6 Acknowledgements

This research has been strongly inspired by work done in the project FABEL the general objective of
which is the integration of case-based and model-based approaches in knowledge-based systems. We

would like to acknowledge detailed comments of Jurgen Paulokat and Oliver Jaschke on a prior draft of
this paper. Nonetheless, the paper reflects our personal view. We thank one anonymous reviewer for
detailed comments. We would like to encourage others to think about the need and special importance
of formalizations in CBR.

References

Avila, H. M., Paulokat, J. and Wef}, S. (1994). Controlling a nonlinear hierarchical planner using case-
based reasoning, 2nd Furopean Workshop on Case-Based Reasoning.

Borner, K. (1994a). Structural similarity as guidance in case-based design, in S. Wess, K.-D. Althoff and
M. M. Richter (eds), Topics in Case-Based Reasoning Selected Papers from the First European Work-
shop on Case-Based Reasoning (EWCBR-93), Vol. 837 of Lecture Notes in Artificial Intelligence,
Springer, pp. 197-208.

Borner, K. (1994b). Towards formalizations in case-based reasoning for synthesis, AAAI-94 Workshop
on Case-Based Reasoning, pp. 177-181. also FABEL Report 22.

Borner, K. and Vof}; A. (1994). Applying machine learning to improve innovative design support systems,
AID-94 Workshop Machine Learning in Design.

Domeshek, E. A. and Kolodner, J. L. (1992). A case-based design aid for architecture, Proc. Second
International Conference on Artificial Intelligence in Design, Kluwer Academic Publishers, pp. 497-
516.

Gentner, D. and Forbus, K. D. (1991). MAC/FAC: A model of similarity-based retrieval, Proceedings of
the Cognitive Science Conference, pp. 504-509.

Goel, A. K. (1989). Integration of case-based reasoning and model-based reasoning for adaptive design
problem solving, PhD thesis, Ohio State University.

Hinrichs, T. R. (1992). Problem solving in open worlds: A case study in design, Lawrence Erlbaum
Associates.

Hovestadt, L. (1993). A4 — digital building — extensive computer support for the design, construction,
and management of buildings, CAAD Futures '93, Proceedings of the Fifth International Conference
on Computer-Aided Architectural Design Futures, North-Holland, pp. 405-422.

Hua, K. and Faltings, B. (1993). Exploring case-based building design - CADRE, Al EDAM 7(2): 135-
143.

Janetzko, D., Borner, K., Jaschke, O. and Strube, G. (1994). Task-oriented knowledge acquisition for
design support systems, First European Conference on Cognitive Science in Industry.

Kass, A. M., Leake, D. B. and Owens, C. C. (1986). SwaLE: A program that explains, in R. C.
Schank (ed.), Ezplanation patterns: Understanding mechanically and creatively, Lawrence Erlbaum
Associates, pp. 232-254.

Kolodner, J. L. (1993). Case-based reasoning, Morgan Kaufmann.
Muggleton, S. (1992). Inductive logic programming, Academic Press.

Plotkin, G. D. (1970). A note on inductive generalization, in B. Meltzer and D. Michie (eds), Machine
Intelligence 5, American Elsevier, pp. 153-163.

Vofl, A. (1994). Similarity concepts and retrieval methods, FABEL-Report 13, Gesellschaft fiir Mathe-
matik und Datenverarbeitung mbH, Forschungsbereich Kiinstliche Intelligenz.

