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Abstract. This paper describes a general approach to support case-based structure generation
named Conceptual Analogy (Börner 1997). The approach can be used to support design tasks
in domains that do not allow the acquisition of a complete and consistent set of constraints or
rules but that do provide a larger set of past experiences. The experiences – also called cases –
may resemble for example CAD data of room layouts or pipe systems. Thus, cases represent
solutions to particular problems without an explicit, a priori separation of problem and solution
variables. The paper starts with a description and formalization of the case-based structure
generation task and a discussion of why standard case-based reasoning and other approaches
are not applicable. Then, the new approach of Conceptual Analogy (CA) is introduced. CA
applies conceptual clustering to organize cases represented by graphs into hierarchical classes
of structurally similar cases. These case classes are then represented by concepts. Given a
problem, i.e., a partial solution, the hierarchy of concepts is searched for applicable concepts,
i.e., concepts that allow the generation of at least one solution to the given problem. Applicable
concepts are used to generate a set of solutions that can be ordered according to their quality.
Properties of the approach as well as complexity results are presented. An architectural design
domain and task where the approach has been applied successfully, is used for illustration
and for practical evaluation. Finally, the approach and its implementation are compared to
two systems that aim at the support of similar design tasks. The paper concludes with an
assessment of the future direction of this research.

Keywords: analogical reasoning, case-based design, case-based reasoning, conceptual
clustering, concept representation, structural similarity

1. Introduction

Design tasks are inherently complex. Oftentimes, it is not possible to acquire
a complete and consistent set of constraints or rules. This might be due to
a poor ratio of knowledge acquisition time to the time saved by using the
system or to the fact that domain experts might have a hard time externalizing
their knowledge. Therefore, rule-based approaches or constraint satisfac-
tion techniques cannot be applied to support human designers. For some
tasks, a set of prior experiences – so-called cases – is available and case-
based reasoning (CBR) (Kolodner 1992) seems to be the natural problem
solving method. In CBR, domain knowledge is stored in four knowledge
containers as identified by (Richter 1995): the case base, the vocabulary used
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to represent cases, the similarity measure, and solution transformations. We
assume that the knowledge required to evaluate solutions is included in the
container for solution transformation. Reasoning proceeds via the CBR cycle
comprising retrieve, reuse, revise, and retain as described in (Aamodt and
Plaza 1994).

However, in some architectural design tasks, which we call case-based
structure generation tasks, the knowledge about the similarity between a new
and a previous problem or about valid adaptations (solution transformations)
of past cases is hard or impossible to acquire. This leaves cases, their vocabu-
lary, and general quality criteria such as ’solutions should resemble past cases
as close as possible’ as the only knowledge available for design support. Even
worse, cases resembling CAD designs of buildings represent solutions only.
Information about which part of the solution represents the original problem
is lost. The question that this paper tries to answer is: Is there a way to support
case-based structure generation tasks efficiently?

The paper starts with a description and formalization of case-based struc-
ture generation tasks. It explains why existing approaches cannot be applied
efficiently. Based on this, the approach of Conceptual Analogy is introduced.
Basic notions and notations are given and knowledge organization and analo-
gical reasoning are explained. Main features of the approach are presented
and complexity results are discussed. Following this, the implementation
of the approach and its application in the domain of architectural design is
demonstrated. Finally, we relate the approach to other research in case-based
design and conclude with an outlook.

2. Case-based structure generation

Design is concerned with the composition of an artefact from single parts
that may be either known and given or just newly created. Constraints on the
artefact may be rigidly or informally defined. In design, experts refer to past
cases frequently and research in case-based design is growing continuously
(Oxman and Voß 1996; Maher and Pu 1997; Voß 1997b; Börner 1998a).

Subsequently, we introduce a specific design task, named case-based
structure generation. It has a number of features that differ from standard
case-based reasoning tasks.

First of all, cases that resemble CAD drawings of built houses represent
solutions to particular problems without an explicit, a priori separation of
problem and solution variables.

Second, problems are completed by (partial) transfer of past cases
showing a high structual similarity. However, design solutions are hardly ever
identical. Frequently, two or more previous solutions must be combined to
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solve a new problem. Therefore, retrieval has to supply cases that can be
combined to solve the current problem.

Third, in order to design a new room layout, pipeline system, roof
construction, etc. the topological relationships between building elements
such as the rooms, the pipes, or the roof parts must be considered in order to
retrieve and properly combine a set of past designs. That is, design cases need
to be represented structurally (e.g., as graphs) to facilitate structural match
and structural combination. The match and combination of structural case
representations poses serious computational problems. Fortunately, many
topological structures can be represented by trees (as opposed to graphs)
which reduces the time spent for match and case combination. Oftentimes,
a central, unique building element can be identified for a set of cases that
support one specific task type. For room layout, the entrance area might
be unique. Pipe systems typically have just one main outlet etc. These
unique elements can be represented by the unique tree root. This reduces
the computational effort required to map two cases or a case and a problem.
The structural match between cases resembles the discovery of identical
connected subgraphs (called components) of trees. Aiming at the preservation
of the main structure, we require that this common structure contains the
central, unique building element that is represented by the tree root node.

Fourth, it is assumed that structurally similar cases, i.e. cases that have a
large identical connected subgraph, meet all constraints of a particular task
type and can therefore be combined.

Fifth, transferring larger structures minimizes the problem of bad case
combinations. Therefore, we require, that each path – from root note to leave
– in the final solution has to resemble a path – from root note to leave – in
one of the original cases. To ensure this, each set of cases that can be used to
generate a new design solution has to meet a so called valence criterion. We
will come back to this in Section 2.1.

Sixth, solutions are correct w.r.t. the cases combined. If a solution can be
generated by transferring a single past case – which is very rare in building
design – the solutions would receive a quality of one meaning: This design
has been built and can be built again. If several past designs have been
combined to generate a solution, its quality increases with its resemblance
to the common structure of cases combined. Note that external constraints
which are not represented in a case may result in a non-acceptance of the
solution by the user.

Furthermore, we can assume that in the selected domain and task there is
usually enough memory space and preprocessing time available. However the
problem solving time has to be minimized.
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2.1. Formalization of case-based structure generation

The verbal description of case-based structure generation tasks can be
formally defined. Subsequently, we formalize the notion of case, case-base,
problem, solution, solution set, similarity measure, and solution quality.

We use the following graph theoretic notions: A graph g = (V g,Eg)

is an ordered pair of vertices V g and edges Eg with Eg ⊆ V g × V g . A set
of graphs is denoted by G. The combination graph g(G) of a set G of graphs
equals the union of the vertices/edges of the graphs in G:

g(G) = (

|G|⋃
i=1

V gi ,

|G|⋃
i=1

Egi ) = (V (G), E(G)).

Formally, a structurally represented case c = (V c, Ec) is a tree containing
a unique root node vR. A case base CB is a finite set of cases. A problem
provides a set of vertices including the same unique vR and perhaps some
edges, i.e., in graph terminology it is a forest. A solution of a problem contains
the problem vertices and edges and adds those and only those vertices and
edges from structurally similar cases that are necessary to connect all problem
vertices and edges.

Figure 1. Graph-based representation of problem and solution.

Example: A graph-based represented problem (a partial design of a pipe
system) and its solution (a final design) are depicted in Figure 1, left and
middle. Both are mapped onto an equally spaced grid. The main access of
the pipe system – represented by a square – is mapped onto the root vertex,
denoted by vR. Outlets – represented by circles – correspond to leaf vertices
VL. Pipes – represented by arrows – are mapped onto edges E. Intermediate
vertices VI represent locations along the pathway. Figure 1, right illustrates
the tree structure of the solution. Note that different domains and tasks may
require a different mapping of objects onto tree representations.

Given a new problem, only cases that show a high structural similarity are
combined to generate its solution. Structural similarity of a graph setG can be
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Figure 2. Graph-based representation of five cases.

defined as the quotient of the number of edges of the common graph divided
by the number of edges of the combination graph CG(G). The common graph
MG(G) of a set of graphs G is defined as the connected subgraph of the
intersection of its edges and vertices. A graph is called connected if there
is a path connecting every pair of vertices. A set of graphs can have several
connected common subgraphs with an equal number of edges. In order to
derive unique common graphs we require the common graph to contain the
unique root node vR .

MG(G) = (V mg,Emg) with (V mg,Emg) is a connected subgraph of

(
⋂
g∈G

V g,
⋂
g∈G

Eg) ∧ vR ∈ V mg.

The structural similarity measure σ then maps a set G of graphs into the
interval [0, 1].

σ (G) :=
{

0 if |⋂g∈G E
g| = 0

Emg

|⋃g∈G Eg | otherwise

This similarity measure is also supported by psychological literature
defining the similarity of two objects by the percentage of matching attributes,
i.e., the number of matching attribute values divided by the total number
of attributes considered. An example is the Hamming distance (Hamming
1980), one of the most commonly used similarity measures for binary
attributes.

Note that this similarity measure defines the similarity of a set of cases
and not between two problems or a problem and a case as in standard CBR.
The similarity measure can therefore be seen as a cohesion measure (see the
discussion in section 3.4.1).

Based on this, a case class CC can be defined as a non-empty subset of a
case base CB that groups cases of high structural similarity. In particular, we
are interested in so-called valid case classes that can be applied to generate
solutions. The set of case classes showing a high structural similarity, named
C(CB) can be defined recursively. It equals all those elements of the power-
set P (CB) = 2|CB| = {∅, C1, . . . , C2|CB|−1}, which
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1. are not empty,
2. show a high similarity, i.e., they have only one element or correspond to

unions of similar, disjunct case classes CCk ∪CCl with CCk ∩CCl �= ∅:
(i) {CC | CC ∈ P (CB) ∧ |CC| = 1} ⊆ C(CB)

(ii) {CCk ∪ CCl | CCk,CCl ∈ C(CB) ∧ � ∃CCm ∈ C(CB)
( ((CCk ∪ CCl) ∩ CCm = ∅) ∧ (σ (CCk ∪ CCm) > σ(CCk∪
CCl)) )} ⊆ C(CB),

3. and have a combination graph (V (CC), E(CC)) that contains no inner
vertex with a valence d larger than one:
CC(CB) = {CC | CC ∈ C(CB) ∧ � ∃v ∈ V (CC)

I (d(v) > 1)}.
Note that all case classes in C(CB) meet criterion 1. and 2., but not the
valence criterion. The 3rd criterion, named valence criterion minimizes bad
case combinations. It ensures that the valence of each intermediate vertex,
which equals the number of edge ends at that vertex, is not larger than one.
In order to be applicable to generate new solutions case classes must meet all
three criteria.

Figure 3. Problem, combination graph of case2 and case3 and solution1.

Example: Given five cases as depicted in Figure 2 and a new problem as
depicted in Figure 3, left, the most similar cases must be selected. None of
the five concrete cases can be used to generate a problem solution. However,
the combination graph of case2 and case3 (see Figure 3, middle) can be
applied to derive solution1 (see Figure 3, right). Usually, more than one solu-
tion exists. For example, by combining case1 to case3 three other problem
solutions can be obtained (see Figure 4).

The set of all solutions for a problem p, that can be generated by
combining cases in case class CC is called solution set SCC,p. The set of
all solutions that can be generated using the entire case base CB equals the
union of all solution sets derived from valid case classes CC(CB) in CB and
is denoted by SCB,p.
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Figure 4. Combination graph of case1 to case3 and solution2 to solution4.

Finally, the set of solutions is ordered according to their quality µ where
the quality is defined by the relative frequency of solution edges w.r.t. the case
class CC applied. In general, the relative frequency PG of an edge (vi, vj ) of
the combination graph of G equals the number of graphs in G containing this
edge divided by the number of graphs in G:

PG((vi, vj )) := |{g ∈ G | (vi, vj ) ∈ Eg}|
|G| .

The relative frequency PG of a set of edges E relative to a set of graphs G
equals:

PG(E) := 1

|E|
∑

(vi ,vj )∈E
PG((vi, vj )).

Based on this, the quality µ of a solution s = (V s, Es) generated using a case
class CC is defined as:

µ(CC, s) := PCC(E
s) =

∑|CC|
i=1 |Es ∩ E(CC)

i | ∗ i
|CC|

|Es| ∈ [0, 1].

Note that the information about the problem part as well as the CC applied to
generate the solution is not stored in the case base. Whenever the user accepts
a certain solution its quality value is set to one. That is, all cases in the case
base have a quality of 1.

Example: The cases shown in Figure 2 can be used to generate four solu-
tions that are depicted in Figures 3 and 4. Solution1 consists of 12 edges.
Eight edges have a relative frequency of one. The remaining four edges have
a relative frequency of 1/2. Thus, solution1 has a quality of

µ({case1, case2}, solution1) = 8 ∗ 1+ 4 ∗ 1
2

12
= 5

6
.

Solutions solution2 to solution4 have a quality of 24
33 , 25

36 , and 23
39 respectively.



94 KATY BÖRNER

2.2. Why standard case-based reasoning cannot be applied

Given that cases are the main repository of knowledge to solve case-based
structure generation tasks, CBR seems to be the appropriate problem solving
method. Compared to other tasks, case-based structure generation tasks show
the following distinctive characteristics:
• Cases represent solutions to particular problems without an explicit, a

priori separation of problem and solution variables.
• The structure of cases is important and thus cases are represented by

graphs.
• Hardly any information about the relevance of features guiding the

selection of similar cases is available.
• Retrieval has to return a valid case class that can be combined to generate

solutions.
• Similarity is not defined for a pair of problems but for a set of cases. It

can be seen as a cohesion measure (see the discussion in section 3.4.1).
• Adaptation mainly corresponds to adding, eliminating, or combining

objects and their relations. In general, there exists more than one
solution.

• The quality of solutions equals the relative frequency of solution edges
w.r.t. the case class applied.

Taken together, standard approaches to CBR are not applicable to solve this
task.

2.3. Why graph-based approaches cannot be applied

In case-based structure generation tasks, the case selection, the case combin-
ation, and the solution evaluation proceeds via graph-based case representa-
tions. Therefore, graph algorithms can be applied to test the validity of 2N ,
N = |CB| case classes to generate all solutions and to order them w.r.t. their
quality µ. That is, the application of graph algorithms would lead to a correct
set of solutions. The memory space used to store the concrete cases would be
linear in N . However, the problem solving time required to search for valid
case classes would be exponential in N , and thus not feasible for real world
applications (see also the discussion in subsection 3.4.5).

3. Conceptual Analogy

Conceptual Analogy (CA) is a general approach that was developed to
support case-based structure generation tasks efficiently. It relies on concep-
tual clustering and the representation of valid case classes by concepts
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Figure 5. Knowledge organization and analogical reasoning.

to facilitate the efficient selection and combination of cases in analogous
situations.

The basic idea is illustrated in Figure 5. During knowledge organization,
conceptual clustering is applied to organize cases hierarchically into case
classes CC. Subsequently, each class of similar cases is represented by a
concept K(CC).

In the second stage, which resembles analogical reasoning, the concept
hierarchy is searched in a top-down manner for applicable concepts. These
concepts are applied to generate, evaluate, and explain solutions. Both
subtasks process graphs but are grounded on attribute value representations
of cases (see section 4).

Central to memory organization and resoning is finding the relational
match between cases and the new solution. Instead of mapping attribute
values, the topological relationships between objects that play a similar
role (e.g. outlets, rooms etc.) need to be mapped. Objects and relation-
ships are transferred from the cases in the case base to the new solution.
Therefore, this structural match and subsequent structure combination can
be termed an ‘analogical mapping and transfer’. In fact, the heart of several
approaches to analogical reasoning is the discovery of mappings between
hand selected, properly represented target and source samples. An example
is the Solar system/Rutherford atom analogy or the Water-flow/Heat-flow
analogy by (Falkenhainer et al. 1986). CA goes beyond most analogical reas-
oning approaches in that it establishes a structural mapping between several
previous cases and one partial solution. In addition, it transfers not just one
source case but combines and adapts past solutions if necessary. Last but not
least, it evaluates the quality of the generated solutions.

We proceed by introducing the details of CA’s knowledge organization
and analogical reasoning and present a formalization of used terminology in
section 3.3.
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Table 1. Similarity metric for CC1 to CC5

σ(CCi ∪ CCj ) CC1 CC2 CC3 CC4 CC5

CC1 1 6/24 5/20 0 0

CC2 1 10/19 0 0

CC3 1 0 0

CC4 1 8/18

CC5 1

3.1. Knowledge organization

Knowledge organization starts with a case base CB = {c1, . . . , cN }, where
N = |CB|, that provides a significant number of structurally repres-
ented cases as well as the structural similarity measure σ (see definition in
section 2).

Nearest-neighbor-based, agglomerative, unsupervised conceptual clus-
tering is applied to create a hierarchy of case classes grouping cases of similar
structure. Conceptual clustering starts with a set of singleton vertices repres-
enting case classes, each containing a single case ci, i = 1, ..., N , represented
by a graph. The set of all singleton case classes is called partition CCP 0

(see definition in section 3.3). The similarity matrix of all case classes in the
partition is determined and the two most similar case classes CCk and CCl

over the entire set are merged to form a new case class CC = CCk∪CCl that
covers both. The two merged case classes are deleted from the actual partition
and the newly formed case class is added. This process is repeated for each
of the remaining N − 1 case classes. Merging of case classes continues until
a single, all-inclusive cluster remains. Information about which case classes
have been merged is stored as well as the similarity values of the resulting
case classes. At termination, a uniform, binary hierarchy of case classes is
left.

Subsequently, each case class is represented by a concept. Case classes
that do not meet the valence criterion are represented by an empty set. All
other concepts equal n = |CC| (possibly empty) graphs showing the same
relative frequency of their edges relative to the cases in CC.

Example: Table 1 shows the similarity metric of CC1 to CC5 representing
case1 to case5 depicted in Figure 2. The similarity of each case to itself is
one. The common graph of CC4 and any other case class contains no edge
resulting in a similarity of zero. Case classes CC2 and CC3 show the highest
similarity of 10/19 and are merged to CC6.
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Figure 6. Concept hierarchy representing case classes CC1 to CC9.

Figure 6 shows the organization of the five cases into a concept hier-
archy. N cases are represented by 2N − 1 case classes respective concepts
K(CC). Leaf vertices in the concept hierarchy correspond to concrete cases
and are represented by the cases themselves, e.g., K(CCi) = {ci} with i =
1 . . . 5. Generalized concepts in the concept hierarchy are labeled K(CC6)

to K(CC9). K(CC6) to K(CC8) are characterized by sets of graphs. Case
class no. 9 does not fulfill the valence criterion. Its concept K(CC9) equals
the empty set. Edges with a relative frequency of one are shown in black,
edges with less relative frequency are drawn in grey. The similarity of each
concept is given on the left hand side. As for concept K(CC6), ten edges with
a relative frequency of one are divided by 19 edges altogether, resulting in a
similarity of 10/19.

Figure 7. Concept representation of case classes CC8.

Concept K(CC8) that represents CC8 = {case1, case2, case3} and
comprises three graphs with a relative frequency of their edges of 1, 2/3, and
1/3 is illustrated graphically in Figure 7. The relative frequency of solution
edges is visualized by different hues of grey (black standing for a relative
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Figure 8. Application of K(CC6) to solve p1.

frequency of 1). It can be applied to generate case1 to case3 as well as
combinations thereof.

3.2. Analogical reasoning

Analogical reasoning is based on concepts exclusively. Given a new problem,
the concept hierarchy is searched for applicable concepts in a top-down
fashion. If the list of applicable concepts is not empty then the concepts
are applied subsequently until all solutions are generated or all applicable
concepts are used. Finally, solutions are evaluated and ordered w.r.t. their
quality. Let us have a look at an example.

Example: Figure 8, (left) depicts the problem from Figure 3. Exploiting the
concept hierarchy shown in Figure 6 the search for applicable concepts starts
on the top, i.e., the applicability of K(CC9) is determined first and returns
−1.

Subsequently, the examination of concept K(CC8) returns 5/26; K(CC1)

returns −1; K(CC6) returns 10/19; K(CC2) returns −1; K(CC3) returns
−1; K(CC7) returns −1. Concepts K(CC4) and K(CC5) are not considered
because their superordinate concept is not applicable. Exactly two concepts:
K(CC6) and K(CC8) are selected. They are depicted in Figure 8, middle and
right. Vertices and edges that are not needed to connect all problem vertices
were eliminated.

One problem solution can be generated by applying K(CC6). Three more
solutions are generated by applying K(CC8). All four solutions are depicted
in Figure 9. Note that they resemble solution1 to solution4 in Figures 3 and
4. Their quality values are 5

6 , 24
33 , 25

36 , and 23
39 respectively.

Again, the relative frequency of solution edges is visualized by different
hues of grey (black standing for a relative frequency of 1). Note that all
applicable, non-empty superordinate concepts of an applicable concept allow
the generation of the solutions of their subordinate concepts with less or
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Figure 9. Resulting solutions.

equal quality values. That is, solution1 can be derived by applying concept
K(CC8). However, the solution quality would be 8 ∗ 1 plus 4 ∗ 1/3 divided
by 12, i.e., 7

9 instead of 5
6 .

3.3. Formalization of Conceptual Analogy

The approach of Conceptual Analogy can be formalized mathematically as
follows: Each partition CCP of a case base CB – generated during memory
organization by conceptual clustering – groups cases into certain case classes
based on their similarity and is defined as follows:

CCP = {CCi |
⋃
i

CCi = CB∧∀i, j∀c1, c2, c3(i �= j∧(CCi∩CCj = ∅)∧

( (c1, c2 ∈ CCi ∧ c3 ∈ CCj)→ σ ({c1, c2}) ≥ Maxl∈{1,2}σ ({cl, c3})) )}
where σ is the similarity measure defined in section 2 and Max returns the
maximal similarity value.

The resulting hierarchy PH of partitions equals:

PH = (CCP 0, CCP 1, . . . , CCPN−1) with |CCP v−1| − 1 = |CCP v|.
Partition CCP 0 contains N = |CB| case classes. All other partitions CCPv

have one element less than the previous partition CCPv−1, i.e., |CCP v−1| −
1 = |CCP v|.

The set of all case classes in PH equals the set C(CB) of non-empty case
classes of high structural similarity:

C(CB) = CCP 0 ∪ CCP 2 ∪ . . . ∪ CCPN−1.

Note that C(CB) contains case classes that do not meet the valence criterion
as defined on page 89.

In order to decrease the complexity of case class selection and solution
evaluation, each case class CC is represented by a concept K(CC). Case
classes that have a combination graph which contains inner vertices with
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a valence larger than one, i.e., that are not valid, are represented by an
empty set. All other case classes are represented by a concept K(CC) :=
{m(CC)

i | i = 1, ..., |CC|}, where the vertices and edges of the graphs
m
(CC)
i = (V

(CC)
i , E

(CC)
i ) equal

E
(CC)
i = {(vl, vk) | (vl, vk) ∈ E(CC) ∧ PCC((vl, vk)) = i

|CC| },
V
(CC)
i = {v | ∃(vl, vk) ∈ E(CC)

i (v = vl ∨ v = vk)}.
Thus each graph shows an identical relative frequency of its edges. Figure 7
showed an example concept representation.

Note that the set of non-empty concepts equals the set CC(CB) of valid
case classes defined in section 2. That is, all non-empty concepts can be
applied to generate solutions. The concrete cases are stored to enable the
dynamic reorganization and update of concepts.

During analogical reasoning, concepts representing case classes of high
structural similarity can potentially generate solutions of higher quality
and should be preferred. Correspondingly, the applicability α of a concept
K(CC) to solve a problem p = (V p,Ep) is defined as

α(K(CC), p) :=
{ −1 if V p �⊆ V (K(CC)) ∨ Ep �⊆ E(K(CC))

σ (CC) otherwise

Whenever 0 ≤ α(K(CC), p) ≤ 1 holds, then at least one solution of p can be
generated by applying K(CC). In general, there exists more than one applic-
able concept. Applicable concepts can be ordered w.r.t. their α value. The
concept showing the highest α value is called the most applicable concept. It
shows the highest structural similarity and solves the problem.

We use an applicability measure instead of the already defined similarity
measure because problems may not contain any edges and thus their structural
similarity to any set of cases could be zero. In addition, case classes with a
high similarity are typically too concrete to generate a solution.

Instead of adapting one or more cases to solve the problem, the concept
representation K(CC) of a case class CC is used to generate a set of adapted
solutions SCC,p for a problem p. The set of all solutions SCB,p of a CB for a
problem p equals the union of solution sets SCC,p.

Finally, the set of solutions is ordered w.r.t. their quality. The quality µ of
a solution s = (V s, Es) depends on the relative frequency of its edges w.r.t.
the case class used. In order to determine PCC(Es), every solution edge Es

has to be mapped with every edge of a case. CA’s concepts which represent
each case class by graphs showing an identical relative frequency of their
edges:

K(CC) = {(V (CC)

1 , E
(CC)

1 ), . . . , (V
(CC)

|CC|−1, E
(CC)

|CC|−1), (V
MG(CC), EMG(CC))}
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allows one to determined solution quality efficiently:

µ(K(CC), s) :=
∑|K(CC)|

i=1 |Es ∩ E(CC)
i | ∗ i

|K(CC)|
|Es | ∈ [0, 1].

Note that this definition of µ is equivalent with the definition given in section
2.1.

3.4. Discussion

The remainder of this section discusses features that are unique to the
approach of Conceptual Analogy. Among these features are the structural
similarity measure, the concept representation, the types of adaptations, and
the set of potential solutions that can possibly be derived from a case base.
Last, but not least, complexity results are presented.

3.4.1. Structural similarity
The similarity measure used by Conceptual Analogy is defined over sets of
cases represented by graphs (Börner 1993; Jantke 1994). Therefore, it can be
seen as a cohesion measure that gives an impression of the unity of a set of
cases.

Corresponding to the definition given on page 89, the similarity of a graph
set G equals the quotient of the number of edges of the common graph
MG(G) divided by the number of edges of the combination graph CG(G).
Let B be the set of all trees with root vertex vR and G,G′ be subsets of B.
P (B) refers to the power-set of B. If a, b ∈ B then b � a denotes that b is
either identical or a subgraph of a.
The common graph mg of two graphs a, b ∈ G is defined as:

MG′(a, b) = (V mg,Emg) with (V mg,Emg) is a connected subgraph of

(V a ∩ V b,Ea ∩ Eb) ∧ vR ∈ V mg

and maps into a structured, partially ordered space:

MG′ : B × B → B.

The computation of MG is commutative and associative:

(1.) commutativity: ∀a, b ∈ G(MG′(a, b) = MG′(b, a))
(2.) associativity: ∀a, b, c ∈ G(MG′(MG′(a, b), c) = MG′(a,MG′(b, c))).

Therefore, the common graph of a set of trees can be defined as:

MG(G) :=
{

g if G = {g}
MG′(MG(G′), g) if G = G′

⋃{g} with G′ �= ∅.
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This definition is equivalent to

MG(G) = (V mg,Emg) with (V mg,Emg) is a connected subgraph of

(
⋂
g∈G

V g,
⋂
g∈G

Eg) ∧ vR ∈ V mg.

Thus the similarity measure is an effective, total function:

σ : P (B) \ {∅} → [0, 1]
with |G| = 1 ↔ σ (G) = 1. Furthermore, it holds:

(i) Idempotence: ∀a ∈ G (MG(MG({a})) = MG({a}) = a

(ii) Embedding: ∀a, b ∈ G ((MG({a, b}) � a) ∧ (MG({a, b}) � b))

(iii a) Monotonicity concerning set inclusion: G ⊆ G′ → σ (G) ≥ σ (G′)
(iii b) Monotonicity concerning subgraph: ∀a, b, c ∈ G ∧ a � b →

MG({a, c}) � MG({b, c}).

Other approaches such as MACS (Bartsch-Spörl and Tammer 1994) and
TOPO (Coulon 1995) define the structural similarity between structured
case representations, i.e., graphs, via their maximal common subgraph. A
comparison of CA with both approaches was presented in (Börner 1998) and
is summarized in section 5.

3.4.2. Concept representation
Conceptual Analogy is unique in the concept representation it uses. We list the
main features of the concept representation used by CA below. See (Komatsu
1992) for a review of theories of conceptual structure.
For all non-empty K(CC) �= ∅ that represent valid case classes in CC(CB)
it holds that:
1. The number of cases in a case class equals the cardinality of its concept:
|CC| = |K(CC)|.

2. The common graph of a CC equals the graph in K(CC) with a relative
frequency of one: MG(CC) = m

(CC)
|CC| .

3. The relative frequency of edges decreases with increasing path length to
the root vertice:

∀ m(CC)
i ,m

(CC)
j ∈ K(CC) : (vx, vy) ∈ E(CC)

i ∧ (vy, vz) ∈ E(CC)
j →

i > j.

4. The union of the vertices and edges of the graphs in K(CC) equals the
combination graph (V (CC), E(CC)) of CC:

V (CC)=
⋃
c∈CC

V c=
⋃

m(CC)∈K(CC)
V m(CC)∧E(CC)=

⋃
c∈CC

Ec=
⋃

m(CC)∈K(CC)
Em(CC)

.
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5. The structural similarity of a case class CC can be defined via its concept:

σ = |Em
(CC)
|CC| |

|⋃m(CC)∈K(CC) Em(CC) | .

These features enable the efficient selection and application of concepts as
well as an efficient evaluation of solutions.

3.4.3. Types of structural adaptations
The adaptation done by CA resembles case combination followed by the
elimination of vertices and edges that do not contribute to a problem’s solu-
tion. Four types of structural adaptations can be distinguished with regard
to the number of cases that are partially or completely transferred. They are
listed in Table 2.

Table 2. Types of structural adaptations

Type MG(CC) � s MG(CC) �� s

|CC| = 1 (1.) complete, single case transfer (2.) partial, single case transfer

MG({c, p}) � s ∧ s = c MG({c, p}) � s � c

|CC| > 1 (3.) complete, multiple case transfer (4.) partial, multiple case transfer

MG(CC ∪ {p}) � MG(CC)∧ MG(CC ∪ {p}) � MG(CC ∪ {s})∧
MG(CC) � s � g(CC) MG(CC ∪ {s}) � s � g(CC)

In all four types of adaptation, the common graph MG(CC∪{p}) of a case
class and a problem is a part of the solution s. Furthermore, the solution is
always a part of the combination graph g(CC) of CC. That is, MG(CC ∪{p})
and g(CC) determine the lower and upper boundaries of the solution space.

Each solution can be categorized into one of the four types of adaptations.
The complete set of solutions might contain solutions that were derived using
different types of adaptation.

3.4.4. Set of potential solutions
Let V c

L and V
(CC)
L be the sets of leaf nodes of case c and combination

graph g(CC) of a case class, respectively. Then, the set of potential solutions
POT (CC) that can be derived from a valid case class CC by case combina-
tion equals:

POT (CC) = {c | c � g(CC) ∧ V c
L ⊆ V

(CC)
L }
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with
1.) CCi ∩ CCj = ∅ �→ POT (CCi) ∩ POT (CCj) = ∅ and
2.) ∀s ∈ SCC,p ∃c ∈ POT (CC) (s = c).

Thus, the number of potential solutions is many times higher than the number
of concrete cases. Assume the combination graph of a valid case class CC
has n leaf vertices. The number of different, potential solutions with k leaf
vertices (1 ≤ k ≤ n) that can be generated from CC equals the number of
combinations of n leaf vertices taken k at a time, i.e.,(

n

k

)
= n!
k!(n− k)! .

Consequently, the number of potential solutions equals

|POT (CC)| =
n∑

k=1

n!
k!(n− k)! = 2n − 1.

Assume for example, the combination graph of a case class shows 10 leaf
vertices, then the number of potential solutions of this case class equals 1023.
To store all potential solutions separately would require an enormous memory
space (and enormous retrieval time). Again, the concept representation used
by CA reduces this memory space and retrieval time substantially.

3.4.5. Complexity results
This section discusses the correctness and completness of Conceptual
Analogy for solving the task of case-based structure generation.

Correctness: The set of concepts used by CA represents the set of valid
case classes. CA’s search strategy guarantees that all applicable concepts are
found and are applied to generate the set of solutions. CA uses the quality
measure µ to order the set of solutions. That is, CA is correct w.r.t. the task
specified in section 2.

As in standard CBR, the quality of cases stored in CB influences the
quality of solutions suggested.

Memory space: Let N be the number of cases in CB. The memory space
required by CA to store all concrete cases by singleton concepts is N . At
most N − 1 concepts K(CCj), j = N + 1, . . . , 2N − 1 represent more than
one case, i.e., kj := |K(CCj )| = |CCj | and kj > 1. Each of those concepts

is represented by a set of graphs m
(CCj)

i , i = 1...kj . Each graph contains
edges with an identical relative frequency of i

kj
. Case classes which do not

meet the valence criterion are represented by empty concepts. In the worst
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case, the concept hierarchy equals a degenerated list and no concept is empty.
Here, the number of graphs representing N − 1 concepts K(CCj ), j =
N + 1, . . . , 2N − 1 equals

N∑
i=2

i = N ∗ (N + 1)

2
− 1.

Thus, the memory space is quadratic in N . In order to consider the number
of edges of cases, we multiply the number of graphs with the average number
of edges resulting in∑

c∈CB |Ec|
|CB| ∗

(
N ∗ (N + 1)

2
− 1

)
.

However, the higher the similarity of a case class the fewer edges are used to
represent the graphs of its concept and the less memory space is needed.

Preprocessing time: The time needed for knowledge organization
comprises the time to determine partition CCP 0, the time required for
conceptual clustering, plus the time to determine the concept representations
(see also section 3.1).

Note that we only consider the number of basic operations required. The
time needed for graph matching, combination, and evaluation depends on the
concrete case graph representations which may vary considerably accross
domains and tasks.

Determination of CCP 0:
In order to determine the partition CCP 0, N cases must be assigned to N

concepts. The number of required assignments is linear to the number of
cases.

Conceptual clustering:
The number of similarity comparisons required to determine partition CCP 0

equals:

N−1∑
i=1

i = N ∗ (N − 1)

2

and in each subsequent partition N − 2, N − 3, ..., 1 (given that only one row
and column are recomputed):

N−2∑
i=1

i = (N − 2)+ (N − 3)+ ...+ 1 = (N − 2) ∗ (N − 1)

2
.
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Both values sum up to:

N−1∑
i=1

i+
N−2∑
i=1

i=2∗
N−2∑
i=1

i+(N−1)=2∗ (N − 2) ∗ (N − 1)

2
+(N−1)=(N−1)2.

Subtracting the last comparison (comparing the CB to itself) results in (N −
1)2 − 1 similarity comparisons and thus a complexity of O(N2).
The complexity of the similarity comparisons depends mainly on the number
of edges of the common graph.

Determination of the concept representation:
Given a case base with N cases, maximum N − 1 concept representations
for case classes containing more than one case must be determined. The
complexity of determining a concept representation depends on the number
of edges of its common graph as well as the number of edges of its cases.
Taken together, knowledge organization is quadratic in N .

Problem solving time: comprises the time required to compute all
applicable concepts, to generate solutions, and to evaluate solutions. Again,
we consider only the number of basic operations required.

Determine applicable concepts:
If a concrete concept K(CC) with σ (CC) = 1 stored in a leaf node
of the concept hierarchy is applicable, then a larger number of concepts
has to be checked for applicability. However, solution generation and
evaluation become easier. If only general concepts are applicable, then fewer
comparisons are needed to determine these concepts, but solution generation
and evaluation might require more computation effort.

Generation of solutions:
In the worst case, all N cases allow the generation of a solution for the
problem, and all case classes that are represented by non-empty concepts are
valid. Here, the applicability of at most 2N−1 concepts has to be determined
resulting in a complexity of O(N).
Solution combination is constrained by the fact that only edges and corres-
ponding vertices are transferred that lead to the complete connection of all
problem vertices and edges by a tree structure. Given that all case classes
and their concept representations meet the valence criterion there are no
alternative paths to consider.
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Table 3. Complexity of graph algorithms and Conceptual Analogy

Complexity Graph Algorithms Conceptual Analogy

memory space O(N) O(N2)

preprocessing — O(N2)

problem solving O(2N ) O(N)

Evaluation of solutions:
The number of solutions depends on the number and type of edges of a
problem as well as the structure of the combination graph of the applied
case classes. Sorting the set of solutions with k = |SCB,p| has an maximum
complexity of O(k log k). Thus, the problem solving time is linear in N .

Comparison: The number of basic operations required to solve case-based
structure generation tasks for graph algorithms and for the approach of
Conceptual Analogy is shown in Table 3. That is, CA reduces the problem
solving time from exponential time to linear time in the number of cases in
CB.

However, CA requires knowledge organization to proceed analogical
reasoning. No ad hoc queries are possible. The extraction and storage of
the concept hierarchy requires additional (pre)processing time and memory
space.

4. SYN: An architectural design assistant

The approach of Conceptual Analogy has been fully implemented in SYN, a
module within a highly interactive, adaptive design assistant system (Belz et
al. 1995). The implemented system interacts with users via the manipulation
of CAD layouts describing real buildings. Figure10 depicts a problem (left)
and its solution (right) of a design task in which a number of fresh air outlets
(objects of type zul-v-h-8) must be connected to the main access (object of
type zul-v-h-4) via pipes (objects of type zul-v-h-6). SYN supports archi-
tects in the design of pipe systems and adapts its support to different needs
based on past user interactions. See (Börner 1995a, 1997) for a more detailed
description of the implementation.

The CAD-like interface of SYN represents designs by attribute values
describing the position and extension of objects in three dimensions as well as
their type. A representation function is needed to translate the attribute value
representation of a layout (problem or case) into its graph representation. A
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Figure 10. A design problem and its solution.

Figure 11. SYN: Selection menu and expert panel.

rerepresentation function is required to translate the graph representation of
a solution into its attribute value representation. The same rerepresentation
function can be used to translate the common graph of the used case class
into its attribute value representation so that it can be displayed. In addition,
geometric transformations such as translation or rotation must be considered.
Mirroring is not a valid operation in this domain.

SYN’s interface consists of a selection menu (left in Figure 11), an expert
panel (Figure 11, right) as well as a naive interface (depicted in Figure 12,
left). The selection menue allows the user to load a case base from the central
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Figure 12. Graphical problem selection via the naive interface.

data base or to select an already organized concept base from the local data
base. Using the expert panel, a user can connect SYN to the main design
assistant system and specify a maximum number of solutions to be generated.
Knowledge organization can be started by pushing the RUN button.

Figure 12 shows a typical work session. The drawing specifies the design
of a building. The room layout as well as the used-air outlets of a climate
system have been designed. The Naive Interface of a SYN client was copied
into the drawing. The main outlet as well as the sub-outlets of an used-air
region have been selected via the mouse. They specify the current problem.

The solution, its explanation via the common graph of the applied case
class, as well as the solution evaluation is presented in Figure 13. Here,
solution objects correspond to pipes that are placed directly in the drawing.
The pipe layout is generated based on the cases and their concept representa-
tions given in Appendix A. If the user asks for an explanation, the common
structure of the applied concept is provided below the solution as shown in
Figure 13. The quality of the solution corresponds to a numeric value (here
0.1).

If the solution is accepted by the user, it is stored in the case base, and the
concept hierarchy must be reorganized in order to incorporate the new case.
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Figure 13. Graphical presentation of the design solution.

This way, the support a user receives is based on her/his past solutions.
Note that a case-base filled with bad solutions will most likely result in
rather bad design suggestions. Even worse, the system will assign high quality
values to those solutions that closely resemble these bad designs.

While the attribute value representation of cases and its translation into
graphs is strongly domain dependent, the algorithms for knowledge organiz-
ation and analogical reasoning work on graph representations and are domain
independent.

5. Related work

The approach of Conceptual Analogy and its implementation in SYN

resembles two other approaches MACS (Bartsch-Spörl and Tammer 1994)
and TOPO (Coulon 1995), that have been developed in the context of the
German research project named FABEL (Voß 1997a).1 All three approaches
aim to solve case-based structure generation tasks. All use a structural

1 See (Voß 1994; Börner 1995b; Voß et al. 1994) for surveys of the diverse approaches and
tools to case retrieval and case adaptation that have been developed in FABEL.
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similarity measure that defines the similarity of graph-based case represen-
tations via their maximal common subgraph (mcs) and transfer case parts to
solve a new problem. However, there are far reaching differences between
the specific case representations, the organization of the case base, and the
way the mcs is used in retrieval and adaptation. A detailed description of
the approaches and their comparison was presented in (Börner 1998a). We
present a brief summary here.

TOPO represents cases by labeled graphs. MACS represents cases by arbit-
rary graphs. In order to compare graph representations, MACS and TOPO

apply graph matching algorithms (clique search and backtracking) that are
known to be NP-complete.

To reduce matching complexity, TOPO applies the Fish & Shrink (Schaaf
1995) retrieval algorithm. The retrieval algorithm works over the attribute
values of case representations and selects one source case. This way, the
number of computationally expensive structural comparisons is reduced to
finding the match between one selected source case and the problem. TOPO

concentrates on case adaptation and requires a separate retrieval system or an
user to provide a case that can be adapted to solve the current problem.

Similar to CA/SYN, MACS organizes the case-base dynamically during a
memory organization process. Instead of organizing cases in a concept hier-
archy, MACS uses a two-level case organization. The lower partition contains
the concrete cases grouped into classes of similar cases. The upper partition
contains graphs describing the mcs of each case class. During retrieval, MACS

performs a two stage retrieval selecting the case class with the most similar
mcs first and searching in its cases for the most similar concrete case(s). This
reduces the number of NP complete graph matches required to search through
N cases to 2

√
N in the best case.

CA/SYN’s restriction to represent cases by trees reduces expressibility,
but offers the advantage of efficient matching. In addition, the tree repre-
sentation of cases guarantees unique mcs. This does not hold for the graph
representations used in TOPO or MACS. Here, domain specific selection rules
need to be defined or user interaction is necessary to select the most suitable
mcs. This can be advantageous during retrieval if different points of view on
two graphs – representing a mcs and a problem – need to be implemented. It
may not be acceptable to organize huge case bases efficiently.

During adaptation, TOPO investigates the compatibility of object types
and relation types of layouts. The frequency of relations in past layouts is
exploited to come up with preferable positions for solution objects. MACS

realizes a simple variant of case adaptation by adding all walks of the case
which do not have an isomorphic mapping in the problem but begin and end
with vertices of their mcs. CA/SYN is unique in that it represents cases by a
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hierarchical concept hierarchy and by its definition of applicability allowing
the efficient selection of the most similar concept that is neither too general
not too concrete, guarantees the generation of a problem solution, and the
evaluation of solution quality.

Online CBR resources such as www.ai-cbr.org or www.cbr-web.org list
a growing number of elaborated case-based design systems, that have been
proposed for a variety of domains such as building design, electro-mechanical
design, design of pharmaceuticals, or VLSI design. However, to our know-
ledge, none of these approaches aims at the support of case-based structure
generation tasks. Therefore, a comparison of other approaches with CA/SYN

would have to be made at a fairly general level and would resemble the
discussions in Section 2.

6. Conclusions

The paper started with the formal definition of a special kind of design task,
named case-based structure generation. The applicability of existing CBR
approaches and graph-based approaches to solve this task was discussed in
subsections 2.2 and 2.3. Based on this, the approach of Conceptual Analogy
was introduced, exemplified, and discussed. Section 4 described the imple-
mentation of CA in SYN and its application to provide efficient support in
the domain of architectural design. Section 5 related Conceptual Analogy
and its implementation to other systems that aim at the support of case-based
structure generation tasks.

Taken together, the approach of CA can be applied advantageously to
support design tasks that match the task of case-based structure generation
formalized in section 2.1. The selection of an appropariate graph representa-
tion for cases is domain and task specific. However, the definitions of case
classes, concept hierarchy, structural similarity, adaptability, and quality are
generic.

Coming back to the question stated in the introduction – the answer is yes.
Conceptual Analogy provides a way to solve case-based structure generation
tasks based on cases and a quality measure. Knowledge about the similarity
and applicability measure was derived from these two sources. Neither of
the two measures encode domain knowledge. Instead they represent control
knowledge and are used to guide the search for applicable concepts and the
generation of solutions. Solution generation can be seen as a special kind of
optimization problem, i.e., finding an optimal solution to a given problem,
case base, and quality measure (Bergmann and Wilke 1998).
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7. Outlook

Artificial intelligence approaches like CA offer efficient ways to support
certain real-world tasks such as architectural design. However, a major
problem concerning assistance systems is the limited interaction capability
of the currently used human-computer interfaces. Often, human-computer
interaction is restricted to non-intuitive use of keyboard, mouse, and screen.
Extensive training is required to handle professional programs such as a CAD
tool effectively.

Virtual Reality techniques and fast computer graphics offer new ways
to create efficient and intuitive human-computer interaction. Multimodal
interaction directly in three-dimensional space, using two hands and audio
feedback, enables the user to formulate design ideas in a much more intuitive
way. Sculptor (Kurmann 1995) or Sketch (Zeleznik et al. 1996) are only two
out of a growing number of available systems that support modeling in 3D.
Additionally, multimodal VR interfaces permit extensive tracing of human
responses that go far beyond recording mouse events, see also (Watson and
Oliveira 1998; Börner and Vorwerg 1998). The resulting behavioral proto-
cols can serve as a basis to support human problem solving in complex
tasks that involve spatially organized information. VR interfaces combined
with Artificial Intelligence techniques like CA may lead to adaptive human-
computer interaction (Börner 1998b) that feels more intuitive and may
provide easy-to-use support for novices and greater effectiveness for experts.

VegoWelt is a Smart Virtual Environment that uses a children’s play-
room scenario for demonstrating and evaluating the support of manipula-
tion activity (Börner 1999a, 1999b). In VegoWelt, human-computer interac-
tion proceeds via direct manipulation of virtual, three-dimensional building
blocks. The approach of Conceptual Analogy is applied to derive concept
hierarchies out of user generated designs as well as to support the design
of complex assemblies by applying existing concepts. This way, knowledge
structures (concepts) and the design support based on them are adapted.
In parallel, human-computer interaction gracefully progresses from novice’s
support on a very concrete level to sophisticated support on a more general
level.
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Appendix A. Case base and derived concepts

This appendix contains a sample case base and concepts representing pipe layouts in real
buildings. These cases have been used by the design assistant SYN to generate the solution
depicted in Figure 13 for the problem selected in Figure 12.

Figure 14. Used-air pipe layouts of different buildings.
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Figure 14 shows a case base of five designs presenting used-air pipe layouts. The layouts
have been positioned on the ARMILLA* grid and have been rotated such that the main access
is in the top left corner.

Figure 15. Combination graph and common graph of pipe layouts I–V.

During knowledge organization the five cases were organized hierarchically into a case
class hierarchy. First, case (II) and (IV), then case (I) and (II), subsequently case (III), (IV),
and (V) and finally all five cases were grouped. The common graph representing all five cases
contains inner vertices with a valence larger than one. It can not be used to generate new
solutions and K(CB) is represented by an empty set. Thus, the concept hierarchy consists of
five concepts each representing a single case as well as three other non-empty concepts. The
common graphs and the combination graphs of the latter are depicted in Figure 15.

The labels of grouped cases are given on the left hand side. Their common graph is drawn
in black. Their combination graph is given in grey and black. To generate the solution shown
in Figure 13 three cases labeled (III), (IV) and (V) were combined.

Figure 16 illustrates the modifications that are required to generate a solution. Additional
vertices and edges (marked by circles) had to be eliminated. The entire layout had to be turned

* ARMILLA is a pipe layout system developed by (Haller 1985). It provides different predefined grids
for the layout of various pipe systems among others.
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Figure 16. Solution generation by design combination.

180 degree. There exist two alternative connections to the main access and thus two solutions
of different quality. The qualitatively best solution is depicted in Figure 16, top.
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