
CIShell -- A Plug-in Based Software Architecture and
Its Usage to Design an Easy to Use, Easy to Extend

Cyberinfrastructure for Network Scientists
Weixia Huang*, Bruce Herr*, Shashikant Penumarthy*, Ben Markines+, Katy Börner*

*School of Library and Information Science
Indiana University

{huangb | bherr | sprao | katy}@indiana.edu
+Department of Computer Science

Indiana University

bmarkine@cs.indiana.edu

ABSTRACT
Today, research communities comprise scholars and practitioners
from multiple disciplines. An example is network science that
aims at the study of small, medium, and large-scale network
datasets collected in social and behavioral science, physics,
biology, and other disciplines.
At an increasing rate, the scientists that invent and implement new
algorithms are not computer scientists. Yet, the algorithms they
invent and implement are useful within and outside of their own
disciplines. The question then becomes: How can those hundreds
and thousands of individual algorithms that are programmed in
different languages for different purposes and data formats most
effectively be made available to non-programmer users spread out
across multiple disciplines?
This paper introduces CIShell – a plug-in based software
architecture that supports the plug and play of algorithms and the
handling of diverse data formats via data model transformation.
We describe the CIShell architecture and its key features and
exemplify its usage in the recently funded Network Workbench
project. We conclude with an outlook of planned work.

Keywords
Cyberinfrastructure Design, Plug-in, Usability, Extensibility,
Data Models, Analysis, Network Science.

1. INTRODUCTION
Fifty years back in time, scientists did not use any computer to
conduct their research. Today, science without computation is
unthinkable in almost all areas of science. Many scientists use
commercial packages such as MS Excel, Matlab, UCINet[1],
Pajek[2] to analyze, model, or visualize their data. However, there
are a growing number of grass roots efforts that aim to make the
newest, best algorithms developed by the researchers themselves
available to other scientists. Examples are R[3], StOCNet[4],
Jung[5], Prefuse[6], and Processing[7]. However, many, if not all,
of the mentioned packages come as APIs or require scripting of
code. None of them supports the easy, wizard based integration of
new algorithms and datasets by developers or provides a menu
driven, easy to use interface for the general user. Yet, many
computer scientists and programmers who have been developing
new algorithm implementations are searching for possible utilities
to quickly disseminate their work. On the other side, many

researchers and educators today are in need of making sense of
small, medium and large scale digital datasets yet are not
equipped with mathematical sophistication and programming
knowledge.
CIShell was designed and implemented to bridge between
algorithms developers and algorithm users. It is a plug-in based
cyberinfrastructure (CI) including a set of APIs and templates that
support the easy integration and dissemination for existing and
new algorithms, deliver a mechanism to share the multitude of
data with different formats, as well as provide an extensible
menu-driven user interface.

2. SYSTEM ARCHITECTURE of CIShell
CIShell was designed to serve as the core for developing data-
code-computing CIs for different scientific communities. Some
basic requirements of CIShell include (1) integrating various
algorithms, (2) handling different data formats, (3) accessing and
processing large-scale datasets efficiently, and (4) extending and
managing the menu-driven user interface. Based on the above
requests, Figure 1 shows the system architecture. Individual
components are briefly described in the following subsections.

2.1 A Plug-in Based Architecture
CIShell can be conceptualized as an empty shell that allows
various algorithms and datasets to be integrated and run as plug-
ins. CIShell also serves as a central controller to manage datasets,
to seamlessly exchange the data and parameters among various
implementations of algorithms, and to provide the basic services
such as the menu driven interface, work log tracking, scheduling,
etc. It contains several key components:

A menu-driven interface supports file load, view, conversion,
and save as well as the selection of diverse preprocessing,
analysis, modeling, and visualization algorithms on the loaded
data.

A work log tracking module records the sequence of steps
performed by a user such as what file is loaded or saved, what
algorithm is run, or what preferences are changed. The log is
displayed in the console and is also saved as a record in a log
file. Error logs are saved in a separate file.

Huang, W., Herr, B., Penumarthy, S., Markines, B., Börner, K. (2006)
CIShell: A Plug-in Based Software Architecture and Its Usage to Design an Easy to Use, Easy to Extend Cyberinfrastructure for Network Scientists.

Proceedings of the International Conference and Workshop on Network Science (NetSci2006), Bloomington, Indiana.

Figure 1. CIShell System Architecture

Preferences can be set to customize the behavior of any plug-
in, including the interface, scheduler, data persisters, or
algorithms.

A scheduler lets a user run algorithms at a particular date and
time and in a specified sequence, which is particularly valuable
for computationally demanding jobs. The number and type of
algorithms that runs in series or in parallel is only restricted by
the amount of memory and processing power available. At any
point in time users can see all currently scheduled or running
processes, monitor their progresses, and also change the
sequence of algorithms scheduled for execution.

A set of core APIs are defined as the extension points for
developing algorithm plug-ins, data model plug-ins and
persistence plug-ins.

2.2 Data Models
CIShell defines a set of generic data model APIs and persistence
APIs. By extending the data model APIs, various data model
plug-ins can be implemented and integrated. Each data model
requires developing a persister plug-in to load, view, and save a
dataset from/to a data file in a certain format. CIShell provides
several templates that can guide plug-in developers step by step in
the creation of a plug-in. Existing templates can be used to
develop data model plug-ins that are highly scalable, e.g., that can
represent a graph with millions of nodes without loading the
whole graph into the memory. CIShell can support an unlimited
number of data models and data formats. Data model converter
plug-ins are used to convert one data model to another. Several
converters have been developed to conduct the transformation
between diverse data models, which facilitates the easy setup of
pipelines of data modeling, analysis and visualization algorithms
that expect different types of data models. For example, a
converter plug-in that transforms the ‘Matrix’ data model to the
‘JUNG Graph’ data model has been developed so that users can
use the ‘Spring Layout’ and ‘Kamada-Kawai Layout’ algorithms
provided by the JUNG library to visualize the network dataset
originally stored in the ‘Matrix’ format. With those converters,
the framework can potentially apply network data in any standard
format to various algorithms.

2.3 Algorithm Plug-ins
CIShell also defines a set of algorithms APIs that allows
developers to easily develop and integrate diverse new or existing
algorithms as plug-ins. While CIShell itself is written in JAVA it
supports the integration of algorithms written in other
programming languages, e.g., in C++ or Fortran. In practice, a
pre-compiled algorithm needs to be wrapped as a plug-in that
implements basic interfaces defined in the CIShell Core APIs.
Different templates are available to facilitate the integration of
diverse algorithms into the CIShell. In most cases, no
programming is required to integrate an algorithm as a new plug-
in. A plug-in developer simply needs to fill out a sequence of
forms for creating a plug-in, export the plug-in to the installation
directory, and then users are ready to use the new algorithm via
the CIShell interface menu.
In the Network Workbench (NWB) tool prototype of CIShell, we
have successfully developed and integrated several classic
network modeling algorithms, such as ‘Barabasi-Albert’ model,
‘Watts-Strogatz small world’ model and ‘Erdös Random Graph’
model. Several network analysis algorithms have also been
integrated into the NWB tool, including directed degree
distribution, total degree distribution, directed/undirected k-
nearest neighbor, one point correlations, clustering, and page rank
algorithm. Since those algorithms are implemented in Fortran,
they deliver great performance on network modeling and analysis.
A large-scale network, such as a data model with millions of
nodes, can be generated and measured in several seconds using
the NWB tool.

3. Planned Work
We are in the process of extending the functionality of CIShell to
better support the integration of network analysis, modeling and
visualization algorithms. For instance, we work on automatically
generating plug-ins from code using drag and drop. A generic
way to build bi-directed converters as bridges between well-
defined data models is in discussion. Eventually, we expect to
make an automatic data model transformation module in which a
dataset can be transparently converted to a format requested by a
specific algorithm. The other direction is to replace the existing
SWT-RCP GUI solution (shown in Figure 1) with the web-based
GUI solution so that CIShell can serve as a core piece for both
web-based applications and standalone Java applications.

4. ACKNOWLEDGMENTS
The project is supported in part by the 21st Century Fund and the
National Science Foundation under Grant No. DUE-0333623, IIS-
0238261 and IIS-0513650.

5. REFERENCES
[1] Borgatti, S.P., Everett, M.G. and Freeman, L.C. 2002.

UCINET for Windows: Software for Social Network
Analysis. Harvard: Analytic Technologies.

[2] Batagelj, V., Mrvar A., (1998) Pajek - Program for Large
Network Analysis. Connections, 21(1998)2, 47-57.

[3] http://www.r-project.org/
[4] http://stat.gamma.rug.nl/stocnet/
[5] http://jung.sourceforge.net/
[6] http://prefuse.sourceforge.net/
[7] http://processing.org/

Huang, W., Herr, B., Penumarthy, S., Markines, B., Börner, K. (2006)
CIShell: A Plug-in Based Software Architecture and Its Usage to Design an Easy to Use, Easy to Extend Cyberinfrastructure for Network Scientists.

Proceedings of the International Conference and Workshop on Network Science (NetSci2006), Bloomington, Indiana.

